A shifted Legendre spectral method for fractional-order multi-point boundary value problems

نویسندگان

  • Ali H Bhrawy
  • Mohammed M Al-Shomrani
چکیده

In this article, a shifted Legendre tau method is introduced to get a direct solution technique for solving multi-order fractional differential equations (FDEs) with constant coefficients subject to multi-point boundary conditions. The fractional derivative is described in the Caputo sense. Also, this article reports a systematic quadrature tau method for numerically solving multi-point boundary value problems of fractional-order with variable coefficients. Here the approximation is based on shifted Legendre polynomials and the quadrature rule is treated on shifted Legendre Gauss-Lobatto points. We also present a Gauss-Lobatto shifted Legendre collocation method for solving nonlinear multi-order FDEs with multi-point boundary conditions. The main characteristic behind this approach is that it reduces such problem to those of solving a system of algebraic equations. Thus we can find directly the spectral solution of the proposed problem. Through several numerical examples, we evaluate the accuracy and performance of the proposed algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of high-order spectral method for the time fractional mobile/immobile equation

In this paper, a numerical efficient method is proposed for the solution of time fractional mobile/immobile equation. The fractional derivative of equation is described in the Caputo sense. The proposed method is based on a finite difference scheme in time and Legendre spectral method in space. In this approach the time fractional derivative of mentioned equation is approximated by a scheme of ord...

متن کامل

Higher order multi-point fractional boundary value problems with integral boundary conditions

In this paper, we concerned with positive solutions for higher order m-point nonlinear fractional boundary value problems with integral boundary conditions. We establish the criteria for the existence of at least one, two and three positive solutions for higher order m-point nonlinear fractional boundary value problems with integral boundary conditions by using a result from the theory of fixed...

متن کامل

Studies on Sturm-Liouville boundary value problems for multi-term fractional differential equations

  Abstract.   The Sturm-Liouville boundary value problem of the multi-order fractional differential equation  is studied. Results on the existence of solutions are established. The analysis relies on a weighted function space and a fixed point theorem. An example is given to illustrate the efficiency of the main theorems.

متن کامل

A spectral method based on the second kind Chebyshev polynomials for solving a class of fractional optimal control problems

In this paper, we consider the second-kind Chebyshev polynomials (SKCPs) for the numerical solution of the fractional optimal control problems (FOCPs). Firstly, an introduction of the fractional calculus and properties of the shifted SKCPs are given and then operational matrix of fractional integration is introduced. Next, these properties are used together with the Legendre-Gauss quadrature fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012